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AN EFFECTIVE APPROACH TO THE SOLUTION OFTWO-DIMENSIONAL HEAT- 

CONDUCTION PROBLEMS FOR MULTICONNECTED COMPOSITE BODIES OF 

COMPLEX SHAPE 

Yu. A. Mel'nikov and I. M. Dolgova UDC 536.24.02 

An algorithm to solve two-dimensional nonstationary heat-conduction problems for 
multiconnected bodies of complex shape, constructed on the basis of potential 
theory methods with preliminary application of the Rothe method in the time vari- 
able, is described. Results of computations are presented for a single- and 
multilayer strip with holes of arbitrary outline. 

It is known that serious calculational difficulties must be encountered in solving boun- 
dary-value problems of mathematical physics generally, and of heat conduction, in particular, 
for domains of complex shape, for examPle, for those whose boundaries do not agree completely 
with the coordinate lines of the chosen reference system. Noticeable successes in overcoming 
these difficulties have been achieved in the construction of calculation algorithms on the 
basis of variational methods using R-functions to select the coordinate system, finite ele- 
ments, and summary representations methods [1-3]. 

For example, the difficulties noted have been overcome sufficiently successfully in [4] 
in the problem of a homogeneous strip with circular holes. The efficiency of using integral 
(potential) representation methods for the desired functions [5, 6] is demonstrated below in 
examples of homogeneous and inhomogeneous strips weakened by holes of arbitrary outline. 

w Let an infinite strip be weakened by holes arranged periodically over its length. 
Let us examine part of this strip within the limits of one period and let us formulate the 
following heat-conduction boundary-value problem for a doubly connected domain ~ (the ex- 
terior part of its boundary is the rectangle 0 _< x _< a, --b _< y _< b, and the interior part is 
an arbitrary closed curve L): 

Ou 
-- ~l, (i. i) 

a Fo 
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U+vo=o = r (x, g), (!. 2) 

Ou Ly=+ b = O, Alu!,=o = Pl (g, Fo), A2u[.=~ = p~ (g, Fo), ( 1 . 3 )  
Og _ 

BU{L= q(x, g, Fo). (1.4) 

Here Fo = ~t/a a is the Fourier criterion, At, A2, and B are linear differential operators of 
not higher than first order, and pl, pa, and q are known functions of their arguments. 

Applying the idea of the method of lines with the derivative with respect to Fo replaced 
by a finite-difference relation on the plane Fok+1 = (k + l)t (k = 0, l, 2, ...; t is the 
spacing between two successive sections Fo = const), we obtain a boundary-value problem for 

the functions uk+1 = u(x, y, Fok+1) 

1 1 
&Uk§ -- -- Uk+l -- Uh in Q, ( 1 . 5 )  

t t 

&u++G= ~ p~+, (g), A2uk+l[+=~ = p~-+, ' (g), (1.6) 

()Uk4"-i I ~-0, Bttk+liL =qk+t(X, g). (i. 7) 
Og ly=+b 

W i t h o u t  l i m i t i n g  t h e  g e n e r a l i t y  o f  t h e  d i s c u s s i o n ,  we can  e v i d e n t l y  e x a m i n e  t h e  p r o b l e m  

( A - - v )  u = F ( x ,  g), 
( 1 . 8 )  

ogOU y=+_~ = 0, Alu].=o ---- 0, A2ul.=~ = 0, ( 1 . 9 )  

Bull = Q (x, y) (1 .  lO) 

in place of (1.5)-(1.7). 

A Green's function of the problem (1.8)-(1.9) can easily be constructed for the rectangle 
0 < x < a, --b ~ y < b, as can be done by separation of variables and subsequent application 
of--the--method of variation of arbitrary constants, for example. Thus, for AI ~ i, A= E d/dx 4 
a, a = 1 it can be represented by such a method by 

where 

g~ (x, +) -- 

g (x, g; ~, q) = ~ gh (x, ~) cos kag/b cos knq/b, 
k~O 

g0 (x, ~) = 

vsh_v +_.m ch y 

v ch v + a s h  v 

( ; s h y  + a c h v  

chv + a sh  v 

a x - - a - -  i 
. . . . . . . . . . . . .  ~, x > ~ ,  

a §  

~z~ - -  r  1 
. . . . . . . . . . . . . . . . . . . .  x, x < L  

a + l  

sh vx -- ch vx/  sh v~ - - , x ~ L  
] 

s h v ~ - - c h v ~ )  shvx - - - - ,  x ~ ,  ( k =  1, 2 . . . .  ). 
u 

(i.ii) 

Then the solution of the problem (1.8)-(1.10) can be written as the sum 

u (x ,  g) = v (x ,  g). + ~ (x ,  g), 

where v(x, y) is the solution of the problem (1.8)-(1.9) representable by the known Hilbert 
theory ([7], p. 177) by the formula 

IIi 



w(x, y) is a function which we shall seek in the form 

w(x,y) = ~g(x, y; ~, n)~(L n)ct~.~L. 
L 

(1.12) 

The weight (density) ~(~, n) of this latter representation is determined to satisfy the 
condition (i.i0) from an equation Of the form 

R (x, y)= j" T (x, y; ~, ~l) tX (~, n) d~,n L. 
L 

(1.13) 

Here 

1~ (x, y) = O. (x, y) - -  By (x, Y)k,  

T(x ,  y; ~, r l )=  Bg(x ,  y; ~, rl). 

As later computations show, obtaining the approximate solution of (1.13) is not associ- 
ated with essential calculation difficulties. It is obtained with sufficient accuracy below 
by the method of quadrature formulas. 

The stationary temperature fields of a strip weakened by elliptical and trapezoidal 
holes with the initial data A: E B E i, A2 = d/dx + u, p: E q ~ i, p2 ~ 0, a = 1 are shown 
in Fig. la. If we set u = 0, then the boundary condition obtained will correspond to an 
adiabatic edge x = a of the strip and, therefore, the boundary-value problem for a strip 
weakened by two series of holes (Fig. 2)will be solved in this case. Here Pl E 0. 

The error in the approximate calculation of the integral (1.12) is easily checked and 
w(x, y) is a harmonic function by Construction; hence, by virtue of the maximum principle the 
error of the solution to the problem (1.8)-(1.10) can be judged by the accuracy of satisfy- 
ing the boundary condition on the contour L, since the boundary conditions are satisfied 
identically on the outer part of the boundary because of the governing properties of the 
Green's function. The error mentioned was a maximum at the points A and did not exceed 0.4% 
for the cases considered [~ith 18 quadrature nodes when replacing the integral in (1.13) by 
a finite sum]. 

The results of computing the temperature field of a strip for the case of discontinuous 
boundary conditions on the contour L 

u l ~  = I, ufcDe~ = 0 

are represented in Fig. lb. 

The solution for other domains ~ with a more complex outer boundary can evidently also 
be obtained by using the algorithm described if the construction of their Green's function 
is possible (a strip, half-strip, circle, circular sector, ring), where the shape of the con- 
tour L imposes no substantial constraints on the applicability of this method. 

w The algorithm elucidated above for the solution of boundary-value problems of heat 
conduction for a single-layer strip is extended in a natural way to the case of multilayer 
strips. Let it be required to find the solution of the stationary heat-conduction boundary- 
value problem for an n-layered strip: 

Aui=f~  ( i =  1, n), ( 2 . 1 )  

A~u~]~=,,, = O, ( 2 . 2 )  

Ou i ~:=~ . Oui+l ~='~ (i = 1 t ~ - - 1 ) ,  
u~':<=a~ = u~+,!~=~, ~ ~--x  = ~+l ~ , (2.3) 

A2u,~l.y==, = O, ( 2 . 4 )  
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Fig. 1. Dimensionless temperature 
distribution in a strip weakened 
by holes of a different shape. 
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Fig. 2. Dimensionless temperature 
field in a strip with two series 
of trapezoidal holes. 

= 0  (i = 1, n), 
(2.5) 

BUitL = Q. ( 2 . 6 )  

If the Green's matrix of the problem (2.1)-(2.5) is known, then the solution of the 
boundary-value problem (2.1)-(2.6) can be obtained by analogy with the previous problem. 

Let us mention one of the possible algorithms for constructing the Green's matrix of 
the boundary-value problem (2.1)-(2.5), namely, let us assume representability of the func- 
tions ui, fi by the expansions 

ui = ~ ui.n (x) cos n~y/b,  
n~O 

P~ = 2 f~'~ (x) cos nrcy/b. 
n ~ O  

(2.7) 

This will result in the following boundary-value problem for a system of ordinary dif- 
ferential equations: 

Ui',n (X) - -  V2ui,n (x) = fi.n (i = 1, n), ( 2 . 8 )  

A~ul,~b:=~o = O, ( 2 . 9 )  

ui,n!x=~ = u~4:,n[x=~ i ; ),iui,,~;x=~ z = )~i+au/-§ (i = 1, n - -  1), ( 2 . 1 0 )  

A2un,n[~=% = O. (2. ii) 

Here 

v = n~/b. 

We construct the Green's matrix of this last problem by applying the Lagrange method of 
variation of arbitrary constants. Let us write the algorithm of its construction for a two- 
layered strip (--a2 ~ x ! al). As is known, for n > 0 the general solution of the homogeneous 
equations corresponding to (2.8) can be written as follows: 

u i , , , = q l ( x )  s h v x  + Q ~ c h v x  ( i =  1,2). 
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The systems of linear algebraic equations of the Lagrange method will appear as follows: 

c;l (x) sh vx + ci2 (x) ch vx = 0 

c~l (x) v ch vx + c12 (x) v sh vx = f~,,," 
(i = 1, 2). 

Hence, 

, [~.~ c h v x  , f~,~ s h v x  (t = 1, 2). 
Cil = , Ci2 

The general solution of (2.8) is hence represented by the formulas 

0 

u,.~ = j' o h (x, g) [ l . .  (g) d~ ~,- c7~ sh vx q- cf2 ch vx, 

a.x 

u2,,, = J ~% (x, ~) h,~ (~) d~ -}- c~ sh vx 4- c'25 ch vx, 
0 

where 

o ,  (x, ~) = 

0 

s h v ( x - - ~ )  
'V 

�9 0 

sh ~ (x . - -  ~) 

, - - a ~ x ~ 0 ,  

- - a , ~ x ~ O ,  

, O < ~ < x ~ a ~ ,  

O < x < ~ a ~ .  

n 
The constants cij (i, j = i, 2) are determined by complying with the boundary conditions 

(2.9)-(2.11). For Ax - i, A2 -d/dx + ~, X = %:/k2 the elements of the Green's matrix gn(x, 
$) = (gnj(x, E))ij=1,2 are determined by the expressions 

= - [  k2. (al, 0) sh vx --D )~kl (al, 0) ch vx k~ (1, ~), - -  a z ~  ~ x ~ . 0 ,  

g'~l I k2(al, O ) s h v ~ - - ~ k l ( a l ,  O)chv~ ks(1 ' x), - - a 2 ~ x ~ O ,  
D 

g~2 = k~(al, ~) /%(1, x), --a~x~O, O ~ a ~ ,  
D 

g,~ _ k~(a~,- O)shvx--k~(al ,  O)chvx  ~,k~(1, ~), O ~ x ~ a l ,  

D - - a , ~ < O ,  

~1 (al, x) kz (L, ~), 0 ~. ~ ~ x -~ at, 
D 

n 

g92----- kl(al '  ~) k~(Z, X)t O < x < ~ < a l ,  

D 

and the parameter D by the relationship 

D = v [~.kl (al, 0) + thva2k~(al, 0)1, 

where 
kl (x, ~) = v ch v (x - -  ~) -Ftx shv  (x - -  ~), 

k 2 (x, ~) v shv  (x - -  ~) + cr ch v (x - -  ~), k a (L, x) = ~ sh vx ~ th va 2 ch vx. 

The case h = 0 in (2.8) requires an independent approach and we easily obtain 

gO ' { x - - ~ - - k 4 ( 1 ,  x)k~(~,, ~)/T, - - a 2 ~ x ~ O  , 
- - k , ( 1 ,  x)ks(~. , ~)/T, - - a 2 ~ . % x ~ _ ~ 0  , 
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Here 

g?2 = - -  k4 (1, x) k~ (1, ~)/T, --  az~x<~O, O~$~.~a~, 

gO = - - / ~ k ~ ( l ,  ~)k~(1, x)/T, -- a ~  ~ <.~O, O-~x.~a~, 

gO= { x--~--k~()~, x)k~(!, ~)/T, O ~ x ~ a l ,  
- -  k4(/~, x) k~(1,  ~)/T, O~.~x.<~.~<~a~. 

T = ~ + r ~- r 

Now, having the Green's matrix of the problem (2.8)-(2.11) let us use the already- 
mentioned Hilbert theorem about partial solutions of inhomogeneous systems of ordinary dif- 
ferential equations. After this, we apply the Fourier--Euler formula for the coefficients of 
the second of the expansions (2.7), which finally permits the elements gij(x, y; ~, q) of the 
Green's matrix for the problem (2.1)-(2.5) to be determined by the formulh 

2 ' ~  1 -}- sign rt g~i (x, ~) cos ~vy cos ~ .  
g~j (x, y; ~, n)=~-~ 2 

ft~O 

The solution of the boundary-value problem for a two-layered strip weakened by holes or grooves 
can be obtained by using the construction of the Green's matrix analogously to the solution 
of the problem (1.8)-(1.10) by using the Green's function (i. Ii) performed above. 

The stationary temperature field of a two-layered strip weakened by an elliptical hole 
(x = 0.2 cos ~; y = 0.6 sin ~) for the following values of the operators, functions, and con- 
stants in the formula A~ ~ B ~ i, Aa ~ d/dx + i, f~ ~ f2 ~ i: a~ = 0.5, a2 = 0.5, b = i, Q = 
cos (~/2), X = i00 (such a ratio corresponds to a steel--aluminum pair, for example) is shown 
by level lines in Fig. 3a. 

The temperature field originating in a two-layered strip with a circular groove whose 
contour intersects the interface between the layers is presented in Fig. 3b. Here the ini- 
tial data were: A~ ~ B ~ i, A2 ~ d/dx + I, fl ~ I, f= ~ I, al = 0.7, a2 = 0.3, b = !, Q ~ 0, 

= i00. 

The error in complying with the boundary conditions on the hole outline did not exceed 
1% in the cases mentioned. 

Therefore, the results presented in this paper permit making a conclusion about the high 
efficiency of the illustrated method of potential representation of the desired quantities in 
constructing calculation algorithms for the solution of heat-conduction boundary-value prob- 
lems for multiconnected inhomogeneous domains of complex shape. 

In conclusion, let us mention that the results used in this paper for the numerical 
realization of the algorithm described were obtained by using a TA-IM translator with the al- 
gorithmic language ALGOL-60 on an"M-222"electronicdigital computer. The time to solve the 
problem was hence about i0 min. 

NOTATION 

~, domain under consideration; x,y,~,~, coordinates; a, width of the strip; b, half the 
spacing between the centers of the holes; L, hole boundary; u, temperature; g(x,y; ~,~), 

Fig. 3. Dimensionless temperature distribution in two-layered 
strips (X = %1/X2 = i00). 
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Green's function; gij(x,y; ~,n), elements of the Green's matrix; ~(x,y), �9 density; li, thermal 
conductivity coefficlents. 
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DETERMINATION OF THE GEC~IETRIC-OPTICS COEFFICIENTS OF THERMAL 

RADIATION BY THE MONTE CARLO METHOD 

A. V. Bushinskii UDC 536.3 

Algorithms of the Monte Carlo method to determine the governing angular coeffi- 
cients for different formulations of the radiant exchange problem under condi- 
tions of a diathermal medium and results of their verification by means of exact 
solutions are presented. 

The method of statistical tests, or the Monte Carlo method [i-6], has recently been ap- 
plied quite frequently to the solution of applied radiant heat-transfer problems. In the 
case of systems filled with a diathermal medium, this method is used principally for the 
direct determination of the geometric-optics characteristics of the radiation field [2-5]. 
Let us examine�9 the question of applying the Monte Carlo method to obtain directly one such 
characteristic, the governing angular coefficient [7, 8]. Let us take the usual assumptions 
about the diffuseness of the radiation and the grayness and opacity of the system boundaries. 
Let us limit ourselves to finding the mean value of the coefficient of greatest interest in 
engineering practice. Let us assume that the system under investigation consists of a finite 
number of zones (bodies), within each of whose limits the given optical and energetic char- 
acteristics are constant from point to point. 

The possibility of a statistical modeling of the governing angular coefficient is based 
on its representation as an infinite functional series [7] (whose first member is the geo- 
metric angular coefficient, and the next terms of the series take into account the first, 
second, and all the remaining reflections) which expresses the method of multiple reflections 
explicitly. Therefore, the desired coefficient can be determined by observing the fate of 
the different rays in time. The probabilistic treatment of the mean governing angular coef- 
ficient ~ik as a characteristic of the fraction of proper radiation of the zone i reaching 
the zone k directly and taking into account all the re-reflections in the system is also used 
in constructing the algorithm of the Monte Carlo method. 

The field of governing angular coefficients is ordinarily found from the solution of in- 
tegral equations of the resolvent of the initial integral equations of radiation transfer. 
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